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ANTIOXIDANT PROTECTIVE MECHANISMS AGAINST 
REACTIVE OXYGEN SPECIES (ROS) GENERATED 
BY MITOCHONDRIAL P450 SYSTEMS 
IN STEROIDOGENIC CELLS
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Mitochondrial P450 type enzymes catalyze central steps in steroid biosynthesis, including
cholesterol conversion to pregnenolone, 11β and 18 hydroxylation in glucocorticoid and
mineralocorticoid synthesis, C-27 hydroxylation of bile acids, and 1α and 24 hydroxylation
of 25-OH-vitamin D. These monooxygenase reactions depend on electron transfer from
NADPH via FAD adrenodoxin reductase and 2Fe-2S adrenodoxin. These systems can
function as a futile NADPH oxidase, oxidizing NADPH in absence of substrate, and leak
electrons via adrenodoxin and P450 to O2, producing superoxide and other reactive oxygen
species (ROS). The degree of uncoupling depends on the P450 and steroid substrate. Stud-
ies with purified proteins and overexpression in cultured cells show consistently that adren-
odoxin, but not reductase, is responsible for ROS production that can lead to apoptosis. In
the ovary and corpus luteum, antioxidant enzyme activities superoxide dismutase, catalase,
and glutathione peroxidase parallel steroidogenesis. Antioxidant β-carotene, α-tocopherol,
and ascorbate can protect against oxidative damages of P450 systems. In testis Leydig cells,
steroidogenesis is associated with aging of the steroidogenic capacity.

Key Words: Ascorbate; Adrenodoxin; Superoxide; Catalase; P450scc; Tocopherol; Vitamin
C; Vitamin E.

Electron Transfer in Mitochondrial P450 Systems

Cytochrome P450 type enzymes represent the largest superfamily of enzymes that
are involved in the metabolism of generally small hydrophobic molecules. These enzymes
share a common structural topology with a heme group in their active site and derive their
name from the absorption maximum of their reduced carbon monoxide complex at 450
nm (Coon, 2005; Estabrook, 2005). In eukaryotes there are two classes of P450s that are
located in the mitochondria and the endoplasmic reticulum. The nomenclature for P450
genes starts with the root name CYP and follows the order CYP:family:subfamily:gene
(Nelson et al., 1996).

Mitochondrial P450 type enzymes are generally involved in the biosynthesis of cho-
lesterol derived steroidal compounds (Hanukoglu, 1992; Miller, 2005). In mammals, the
reactions catalyzed by these enzymes include cholesterol conversion to pregnenolone
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(which is the first step in steroid hormone biosynthesis in all steroidogenic tissues), 11β
and 18 hydroxylation reactions in glucocorticoid and mineralocorticoid biosynthesis, C-27
hydroxylation of cholic acid in bile acid metabolism, and 1α and 24 hydroxylations of 25-
OH-vitamin D (Table 1). Sequencing of the drosophila genome has revealed several
P450s with strong homology to animal mitochondrial P450s (e.g., Uniprot ID:
C12B1_DROAC). Yet, the biochemical functions of these enzymes in insects remain to
be determined.

Hydroxylation reactions catalyzed by the mitochondrial P450s depend on NADPH
as a source of reducing equivalents and molecular oxygen (O2). These P450s function as a
monooxygenase catalyzing incorporation of one atom of O2 into the substrate while the
second atom of O2 is reduced to water with the following stoichiometry:

In these reactions NADPH donates two electrons which are transferred to P450 via
two electron transfer proteins, adrenodoxin reductase, which is an FAD containing fla-
voenzyme, and adrenodoxin, which is a [2Fe-2S] ferredoxin type iron-sulfur protein
(Grinberg et al., 2000; Ziegler et al., 1999). FAD of adrenodoxin reductase accepts two
electrons from NADPH, and these are transferred one at a time to adrenodoxin which is a
one electron carrier. Thus, electrons are transferred in the following order:

This order of electron transfer is similar to that of some bacterial P450 systems, such
as P450cam from Pseudomonas putida, that includes a ferredoxin reductase and a ferre-
doxin (named putidaredoxin) as the electron transfer proteins (Schiffler and Bernhardt,
2003). In contrast, the microsomal P450 systems are dependent on a different type of
reductase with two coenzymes, FAD and FMN (Degtyarenko and Kulikova, 2001). FAD
can be reduced by two electrons. FMN can accept only one electron at a time from the

Table 1 Reactions catalyzed by animal mitochondrial P450 systems.

P450 Gene Uniprot Major reaction EC Highest levels in ID

P450scc CYP11A1 CP11A Cholesterol side 
chain cleavage

1.14.15.6 Steroidogenic cells in 
adrenal cortex and 

gonads
P450c11 CYP11B1 C11B1 Steroid 11β hydroxylation 1.14.15.4 Zona fasciculata of 

adrenal cortex
P450c18 CYP11B2 C11B2 Steroid C-18 hydroxylation 1.14.15.5 Zona glomerulosa 

of adrenal cortex
P450cc24 CYP24A1 CP24A 25-OH-vitamin 

D3-24 hydroxylation
– Kidney tubules

P450c27 CYP27A1 CP27A Sterol C-27 hydroxylation – Liver
Vitamin D3-25 

hydroxylation
P450c1α CYP27B1 CP27B 25-OH-vitamin D3-1α

hydroxylation
– Kidney

References for the individual sequences can be retrieved from the Uniprot database by searching for Uniprot
ID + asterisk (*) (e.g., CP11A*) in the Uniprot ID/AC field.

Substrate  H + NADPH + H+  + O2  Substrate  OH + NADP+  + → HH2O

NADPH adrenodoxin reductase  adrenodoxin  P450→ → →
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FAD and then transfers it to the P450. Thus, in the microsomal P450 systems the order of
electron transfer is:

All three proteins of the mitochondrial P450 systems are located on the matrix side
of the inner mitochondrial membrane (Hanukoglu et al., 1990b). Whereas, the mitochon-
drial P450s behave as integral membrane proteins, the electron transfer proteins are solu-
ble in the matrix (Hanukoglu et al., 1981a, 1981b). All three proteins are encoded as larger
precursors, and their signal peptides are cleaved during transfer into mitochondria
(Omura, 1998). In contrast to the multiplicity of P450 forms, there is one form of adreno-
doxin reductase and adrenodoxin, each encoded by one or two similar nuclear genes in all
animal species (Grinberg et al., 2000; Hanukoglu et al., 1987; Miller, 2005). Thus, the
electron transfer proteins are not specific to individual P450s and serve as electron donors
for different cytochromes P450 in different tissues. Adrenodoxin reductase and adreno-
doxin are expressed in all human tissues examined (Brentano et al., 1992). Their highest
levels of expression are observed in steroidogenic cells, especially in adrenal cortex and
ovarian corpus luteum (Brentano et al., 1992; Hanukoglu and Hanukoglu, 1986). The levels
of these proteins show no significant sex or inter-individual variation in bovine adrenal
cortex (Hanukoglu and Hanukoglu, 1986).

Previous studies established several general principles of function for P450 system
electron transport chains: 1) The reductases are generally expressed at much lower levels
than P450s, there being only one molecule of reductase per about 10 or more molecules of
P450 (Hanukoglu and Hanukoglu, 1986); 2) The protein components are independently
mobile and do not form static multi-component complexes; 3) Proteins that are redox part-
ners form transient high affinity 1:1 complexes during their random diffusions, in accor-
dance with the principles of mass action. Dissociation constants of these protein-protein
complexes are strongly influenced by the redox states of the proteins and other molecules in
the environment, such as P450 substrate, ions, and phospholipids; 4) The transfer of an elec-
tron between two redox partners depends on the formation of a specific high affinity 1:1
complex between the two proteins (Hanukoglu and Jefcoate, 1980; Lambeth et al., 1982).

The process of electron transfer during enzyme activity may be “coupled” or “leaky.”
In a coupled P450 system all electrons from NADPH are utilized in substrate hydroxylation
reactions. When 100% of the electrons from NADPH are used in monooxygenation, then the
efficiency of the system is also 100%. If a portion of the electrons are transferred to other
acceptors, such as O2 leading to the production of oxygen radicals, then this process is
referred to as “uncoupling” of electron transfer from hydroxylation, as “leaky” electron
transfer, and as “futile” oxidation. Some of the microsomal cytochromes P450 are highly
uncoupled (Ding et al., 1991; Kohno et al., 2005; Puntarulo and Cederbaum, 1996). The
leakage of electrons from mitochondrial respiratory electron transfer chain is considered
a major source of oxygen radicals in cells (Genova et al., 2003; Turrens, 2003; Vinogra-
dov and Grivennikova, 2005). A recent study indicates that a low percentage of only
0.15% of electron flow is directed to H2O2 formation in mitochondrial electron transport
chain (St-Pierre et al., 2002). Yet, even this low rate may be sufficient to cause accumu-
lation of oxidative damage, ultimately resulting in aging (St-Pierre et al., 2002).

In steroidogenic tissues, the concentrations of the mitochondrial P450 system com-
ponents are as much as 10 times higher than other electron transfer chain enzymes, and
microsomal P450s (Hanukoglu and Hanukoglu, 1986). Thus, even if these P450 systems

NADPH  FAD  FMN  P450→ → →



174 I. HANUKOGLU

leak electrons at a low rate, their total capacity for free radical generation could be high,
especially in steroidogenic tissues.

The following sections present a review of studies on the involvement of the mito-
chondrial P450 systems in the generation of reactive oxygen species (ROS), and on the
antioxidant mechanisms that are involved in protecting against these free radicals.

Studies with Purified Enzymes

Within a cell with multiple factors it is difficult to examine the reactions of the indi-
vidual components of a P450 system. Reconstituted systems with purified mitochondrial
P450 system proteins have allowed examination of the reactions of each of the compo-
nents of the system. The concentrations of NADPH, adrenodoxin reductase, adrenodoxin,
and P450scc can be determined based on their extinction coefficients (mM−1 × cm−1) at
340 nm (6.2), 450 nm (10.9), 414 nm (11), and 390 nm (110), respectively. Reduction or
oxidation of these components can also be monitored using a spectrophotometer at a
wavelength appropriate for each. The formation of the steroid product can be assayed
using a specific assay. In a tightly coupled P450 system, the rate of NADPH oxidation
would be expected to match the rate of substrate hydroxylation. In contrast, in a leaky sys-
tem, a significant gap would be observed between these two parameters:

If reaction kinetics show a leaky system, the next step is then to identify the molecule that
is accepting the electrons. Experiments using purified mitochondrial P450 system proteins
showed that these systems can oxidize NADPH in the absence of a steroid substrate
(Hanukoglu et al., 1993; Rapoport et al., 1995). Depletion of O2 in solution using glucose
oxidase revealed that O2 is the acceptor of the leaking electrons (Hanukoglu et al., 1993).
ESR assays using a spin trap and other assays provided further evidence that leaking elec-
trons react with O2 to produce superoxide radical (Hanukoglu et al., 1993).

Basic reactions and assay of superoxide radical. Transfer of a single elec-
tron to O2 results in the formation of a superoxide radical.

Superoxide radical is a highly reactive molecule that can participate in a series of reac-
tions. Superoxide is the base form of a weak acid, the hydroperoxyl radical, 

The pK of this reaction is 4.8. Thus, at pH = 7 only about 1% of superoxide molecules are
in the hydroperoxyl form.

Two superoxide radicals can react with two protons to produce hydrogen peroxide.
This reaction is called a “dismutation”:

Coupled system: [NADPH oxidized] = [substrate hydroxylated]

LLeaky system: [NADPH oxidized] > [substrate hydroxylated]

e   +  O2   O2
− •−⎯→  

HO2
•

HO2   O2  +  H+• •−� ⇀�↽ ��   

2O2  +  2H+    H2O2   +  O2
•− ⎯→
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The same reaction is catalyzed by the enzyme superoxide dismutase (SOD), which has
one of the highest turnover numbers among enzymes. Hydrogen peroxide can also be
reduced to water by glutathione peroxidase (Fig. 1).

Superoxide can react with hydrogen peroxide to produce highly reactive hydroxyl
radical (Haber-Weiss reaction):

Superoxide can reduce ionic forms of iron and copper:

In addition to these basic reactions, oxygen radicals may also react with macromole-
cules such as lipids, sugars, proteins, and nucleic acids. The chemistry of these complex
oxidation reactions has been reviewed (Cooke et al., 2003; Inoue et al., 2003; Marnett
et al., 2003; Stadtman, 2001).

The assay of superoxide radicals is difficult because of their high reactivity and
short half-lives. Commonly used assays are based on the spectrophotometric measurement

Figure 1 The activities of antioxidant enzymes. Superoxide dismutase (SOD) catalyzes direct dismutation of
superoxide to H2O2. Catalase catalyzes decomposition of hydrogen peroxide into oxygen and water without the
production of free radicals. Glutathione peroxidases catalyze reduction of peroxides using glutathione (GSH) as
a source of reducing equivalents. The product of the reaction, oxidized glutathione (GSSG), is recycled to its
reduced state (GSH) by the enzyme glutathione reductase that uses NADPH as a source of reducing equivalents.

SOD
 O2 + H2O2 H2O + O2 
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Glutathione reductase 
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+

NADPH + H
+
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–
 + 2 H

+

H2O2 2 H2O 

•

O2  +  H2O2     O2   + OH  +  OH•− • −⎯→

O2  +  Fe3+     O2   + Fe2+•− ⎯→

O2  +  Cu(II)    O2   + Cu(I)•− ⎯→
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of products that are produced after reaction with superoxide radical; e.g., nitroblue tetrazo-
lium reduction to monoformazan, epinephrine oxidation to adrenochrome, and cyto-
chrome c reduction (Tarpey et al., 2004). These methods are relatively simple, but because
of frequent nonspecific color reactions most cannot be used in quantitative assays. Some
of these molecules, such as nitroblue tetrazolium and cytochrome c, are not suitable for
study of enzymatic electron transfer systems that can reduce the molecule directly rather
than through oxy-radicals. Oxy-radicals can be assayed using spin-traps with ESR spec-
troscopic equipment (Buettner and Mason, 1990). This method is difficult to use for quan-
titative kinetic assays because the rates of reaction of the spin-trap molecule with oxygen
radicals often do not reflect the rate of radical formation. In reconstituted systems with
purified enzymes, superoxide has been quantitatively assayed after dismutation to H2O2
by superoxide dismutase (Rapoport et al., 1994). In contrast to superoxide, H2O2 is rela-
tively stable and can be assayed by H2O2 dependent peroxidation or hydroxylation of
compounds that can be measured by absorbance or fluorescence (Rapoport et al., 1994).
Fluorimetric methods are generally more sensitive; however, these methods cannot be
used in reactions with pyridine nucleotides, such as NADPH, because of their strong over-
lapping fluorescence.

Intracellular production of superoxide has been measured using dihydroethid-
ium, a cell-permeant compound that can undergo a two-electron oxidation to form
ethidium bromide, which can then be measured by flow cytometry of cells in suspen-
sion using fluorescence-activated cell sorter (FACS) (Tarpey et al., 2004). Another
approach for superoxide detection employs chemiluminescent probes, such as lucige-
nin, that emit light during reaction with superoxide radicals. The low intensity signal
of these probes require sensitive luminometers. The problems of sensitivity and speci-
ficity of these methods have been discussed in recent reviews (Brandes and Janiszewski,
2005; Tarpey et al., 2004).

Electron leakage from adrenodoxin reductase and adrenodoxin. Adren-
odoxin reductase (AdR) is an FAD-containing enzyme that has two substrates, NADPH
and adrenodoxin. AdR oxidizes NADPH, accepting two electrons. AdR then reduces
adrenodoxin by transferring a single electron at a time (Chu and Kimura, 1973; Lambeth
and Kamin, 1976). Adrenodoxin reductase is specific for NADPH as its Km for NADPH
and NADH are 1.8 μM and 5.56 mM, respectively (Chu and Kimura, 1973). The sequence
of AdR revealed a specific NADP+ binding motif that is present in many unrelated
NADPH dependent enzymes (Hanukoglu and Gutfinger, 1989). Crystal structure of AdR
confirmed the importance of this motif in determining the NADPH versus NADH speci-
ficity of the enzyme (Ziegler et al., 1999).

The ability of AdR and adrenodoxin to transfer electrons to O2 is strongly dependent
on the formation of complexes between these proteins. In aerobic solution, adrenodoxin
reductase that is reduced by NADPH remains reduced and does not readily oxidize by
itself (Chu and Kimura, 1973; Hanukoglu et al., 1993; Sugiyama et al., 1979). Addition of
adrenodoxin greatly stimulates the rate of NADPH oxidation and O2 reduction. Thus,
reductase-adrenodoxin couple functions as a strong futile NADPH oxidase (Hanukoglu
et al., 1993). The rates of electron leakage in the presence of different combinations of
P450 system components are summarized in Table 2.

Kinetic events leading to the formation of superoxide radical can be summarized in
four steps. In the following reactions, a dot (•) represents a single electron and the square
brackets, [], signify an intermediate complex.
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In the first step, AdR oxidizes NADPH by transferring two electrons to the FAD
coenzyme:

In the second step, reduced AdR (AdR••) reduces adrenodoxin by transferring a sin-
gle electron:

In this reaction, adrenodoxin (Ad) is the substrate of the reductase. Consistent with this,
the dependence of the rate of NADPH oxidation on [adrenodoxin] shows Michaelis-
Menten kinetics (Hanukoglu et al., 1993).

In the third step, reduced adrenodoxin donates its electron to O2, generating super-
oxide. Kinetic analyses suggest that this reaction takes place while adrenodoxin remains
bound to AdR (Hanukoglu et al., 1993):

This reaction is probably immediately followed by the transfer of the second electron of
AdR to adrenodoxin and reduction of a second molecule of O2:

After this step, the next cycle of events starts over again with reaction (1).
The interactions of AdR and adrenodoxin are dependent on their redox status. The mid-

point potential of adrenodoxin reductase is −274 mV (Table 3) and is not significantly affected
by the binding of adrenodoxin (Lambeth and Kamin, 1976). However, the redox potential of
adrenodoxin shifts by at least 40 mV (from about −290 mV to −330 mV) upon its binding to
reductase (Table 3) (Grinberg et al., 2000; Lambeth and Kamin, 1979). The redox potential for
the oxygen/superoxide couple is −330 mV (Table 3). Thus, AdR-adrenodoxinred complex
would have a more favorable potential to reduce O2 than unbound adrenodoxinred. It has been
noted that adrenodoxin functions as an automatic “electron gun,” constantly being loaded and
fired, until electron supply via NADPH is exhausted (Hanukoglu et al., 1993).

After NADPH depletion, reduced adrenodoxin molecules oxidize at a slower rate
that has been referred to as “auto-oxidation” (Hanukoglu et al., 1993). Auto-oxidation

Table 2 The rates of electron transfer from NADPH to O2 or cytochrome c by the bovine mitochondrial P450
system components.

Reactants Electron acceptor
Rate 

(mol e−/min/mol AR)
Vmax 

(μmol e−/min)

Adrenodoxin reductase (AdR) O2 <0.001
AdR + adrenodoxin O2 149 ± 34 3.5 ± 0.3
AdR + adrenodoxin + P450scc O2 721 ± 125 7.8 ± 2.1
AdR + adrenodoxin Cytochrome c 387 ± 19

All the rates are based on aerobic reactions carried out at 37°C, in 10 mM Hepes, pH 7.2, and 100 mM KCl
(Hanukoglu et al., 1993). Cytochrome c is not a natural acceptor of electrons from adrenodoxin.

AdR + NADPH  [AdR NADPH]  AdR•• + NADP+  + H+→ → (1)

AdR•• + Ad  [AdR•• Ad]  [AdR• Ad•] → → (2)

[AdR• Ad•] + O2   [AdR• Ad] + O2
•-  → (3)

[AdR Ad•] + O2   [AdR Ad] + O2
•-  → (4)
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kinetics fit first-order reaction that is highly dependent on temperature (Hanukoglu et al.,
1993). Adrenodoxinred has a lower affinity for AdR than oxidized adrenodoxin (Lambeth
and Kamin, 1979). Thus, in absence of electron supply from AdR, adrenodoxinred would
tend to dissociate from AdR. Because unbound adrenodoxinred has a higher (less negative)
redox potential than AdR-adrenodoxinred complex, it should be less effective at reducing
O2 (compare values in Table 3). Consequently, the rate of superoxide production drops
drastically during auto-oxidation (Hanukoglu et al., 1993).

Oxidation of NADPH by AdR–adrenodoxin couple is associated with inactivation
of adrenodoxin (Rapoport et al., 1995). This inactivation was inhibited by the addition of
superoxide dismutase (SOD) but not of catalase, indicating that the agent responsible for
the inactivation was superoxide radical and not H2O2 (Rapoport et al., 1995).

As part of the mechanism of stimulation of steroidogenesis, trophic hormones may
cause a transient increase in mitochondrial matrix calcium ions (Ca2+) (Spat and Hunyady,
2004). Submillimolar concentrations of Ca2+ stimulate electron leakage from the reduc-
tase-adrenodoxin couple, while MgCl2 seem to have no effect at similar concentrations
(Hanukoglu et al., 1993). In the presence of 100 mM NaCl, micromolar concentrations of
CaCl2 have been reported to inhibit P450scc activity in Tween 20 or in phospholipid vesi-
cles (Hanukoglu et al., 1981a). This inhibition may be partly due to the electron leakage
stimulating effect of Ca2+. The interactions of adrenodoxin with mitochondrial P450s is
greatly affected by the ionic strength of the solution (Hanukoglu et al., 1981a, 1981b;
Lambeth and Kriengsiri, 1985; Schiffler et al., 2004). Yet, the effect of Ca2+ at low con-
centrations indicates an ion-specific effect independent of ionic strength.

Table 3 Standard reduction potentials of the redox couples reviewed.

Oxidized form Reduced form Ligand E°′ (mV) Reference

NADP+ NADPH – −320 –
FAD FADH2 – −219 –
AdR AdRred – −274 [Chu, 1973 #637]
AdR AdRred Adrenodoxin −292 ± 8 (pH 7.5) (Lambeth et al., 1976)
Adrenodoxin Adrenodoxinred – −273 (Huang and Kimura, 1973)

−291 ± 18 (pH 7.5) (Lambeth et al., 1976)
Adrenodoxin Adrenodoxinred AdRred −331 ± 5 (pH 7.5) (Lambeth et al., 1976)

(Lambeth and Kamin, 1979)
P450scc P450sccred – −412 ± 2 (pH 7.4) (Light and Orme-Johnson, 1981)
P450scc P450sccred Cholesterol −284 (Lambeth and Pember, 1983)

−305 ± 1 (pH 7.4) (Light and Orme-Johnson, 1981)
P450scc P450sccred Cholesterol + 

adrenodoxin
−314 (Lambeth and Pember, 1983)

P450scc P450sccred Pregnenolone −333 ± 3 (pH 7.4) (Light and Orme-Johnson, 1981)
O2 O2

•− (superoxide) – −160 (Schafer and Buettner, 2001)
−330 (at 1 atm.)

Ascorbate•−, H+ Ascorbate – +282 (Buettner, 1993)
Tocopheryl•, H+ Tocopherol – +500 (Buettner, 1993)
Superoxide H2O2 – +940 (Buettner, 1993)

AdR: Adrenodoxin reductase, AdRred: Reduced adrenodoxin reductase.
Unless indicated, all measurements are at pH = 7.0. The proteins are all from bovine sources.
Reduction potential is a measure of the tendency of each couple to accept or donate an electron. In general, a

reduced form with a lower potential is capable of donating an electron to the oxidized form of a couple with a
higher potential. For example, NADPH (−320 mV) can reduce FAD (−219 mV), but not vice versa.
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Electron leakage from the P450s. In reconstituted mitochondrial P450 sys-
tems, electron leakage reactions have been studied with both P450scc, specific for choles-
terol side-chain-cleavage, and P450c11, specific for steroid 11β–hydroxylation
(Hanukoglu et al., 1993; Rapoport et al., 1995). Addition of either of these P450s
increases superoxide production significantly above that observed by reductase and adren-
odoxin couple (Hanukoglu et al., 1993; Rapoport et al., 1995).

In the absence of its substrate cholesterol, P450scc has been observed to be more
active than adrenodoxin in reducing O2 to superoxide, with a maximal effect at a much
lower concentration (0.3 μM vs. >7 μM for adrenodoxin) (Hanukoglu et al., 1993). In
adrenal mitochondria the concentrations of P450scc and adrenodoxin are similar
(Hanukoglu and Hanukoglu, 1986). In a system with this molar ratio of the two proteins,
electrons appeared to leak mainly through P450scc and not through adrenodoxin
(Hanukoglu et al., 1993).

Ideally, in the absence of its substrate, P450 should have a lower reduction potential
to minimize its futile reduction and to avoid ROS production. Indeed, under anaerobic
conditions (without O2), the reduction potential of substrate free P450scc (−412 mV) is
lower than that of P450scc–cholesterol complex (−305 mV) (Table 3). However, sub-
strate-free P450scc is reduced easily by adrenodoxin under aerobic conditions and leads to
production of superoxide (Hanukoglu et al., 1993). A possible explanation for this appar-
ent discrepancy is that the binding of O2 may increase the redox potential of P450scc.
Adrenodoxin in oxidized or reduced forms does not have a major effect on the reduction
potential of P450scc (Table 3) (Lambeth and Pember, 1983). Many microsomal P450s
have been observed to function as NADPH oxidase reducing oxygen in the absence of a
substrate, and producing superoxide anion, hydrogen peroxide, or water (Ding et al., 1991;
Kohno et al., 2005; Puntarulo and Cederbaum, 1996). NADPH oxidase activity of some of
these microsomal P450s (e.g., Ding et al., 1991), is much higher than that of P450scc.

Effects of steroids on electron leakage. A study that examined ROS forma-
tion in reconstituted mitochondrial P450 systems revealed that both P450scc and P450c11
generate ROS during their catalytic function of steroid hydroxylation (Rapoport et al.,
1995). The assay system in this study included SOD and catalase to convert superoxide
generated during reactions to H2O2. The steroid product and H2O2 were then assayed after
terminating the reactions (Rapoport et al., 1994, 1995). While in the P450scc system at
most 15% of the total electron flow was directed to ROS formation; in the P450c11 sys-
tem 32–43% of the electrons were consumed in ROS generation (Rapoport et al., 1995). In
these studies, P450scc reactions were carried out at 37°C, and P450c11 reactions at 30°C
because of the temperature sensitivity of P450c11. Thus, the difference between the leak-
age rates of these P450s would be further magnified at 37°C reactions for P450c11.

Examination of the effects of substrate and other steroids revealed further differ-
ences between the two mitochondrial P450s. P450scc system produced less H2O2 during
cholesterol substrate hydroxylation than that observed in the absence of substrate. In other
words, the coupling of the P450scc system was greater during cholesterol metabolism
(Rapoport et al., 1995). Earlier stopped-flow measurements also indicated that cholesterol
inhibits P450scc autooxidation (Tuckey and Kamin, 1983). In contrast, P450c11 system
produced more H2O2 during substrate deoxycorticosterone metabolism (Rapoport et al.,
1995). The product of P450scc, pregnenolone, had no stimulatory effect on futile NADPH
oxidation by the P450scc system. In contrast, 11β-hydroxylated products of P450c11, and
other steroids with a strict stereo-specificity, strongly stimulated electron leakage from
P450c11, but not from P450scc (Rapoport et al., 1995). These results overall indicated
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that P450c11 catalyzed steroid hydroxylation is poorly coupled relative to the P450scc
activity.

Analyses of the steroid effects on P450c11 reactions (Rapoport et al., 1995) show that
steroids can be classified into four groups based on their effects and their structures (Table 4):

1. Leakage stimulatory substrates: C-21 steroids with a 3-keto group and 4-ene double
bond. Examples: Deoxycortisol, deoxycorticosterone.

2. Leakage stimulatory products or analogs: C-19 and C-21 steroids with an 11β-hydroxy
and a 3-keto group and 4-ene double bond that do not appear to be a substrate for
P450c11. Examples: 11β-OH-testosterone, corticosterone, progesterone, and cortisol.

3. Leakage inhibitory steroids: C-19 and C-21 steroids with an 11α-hydroxy or an 11-keto
group, a 3-keto group and 4-ene double bond. Examples: 11α-OH-testosterone and
11α-OH-cortisol.

4. Steroids without an effect: C-19 steroids without a 3-keto group or 4-ene double bond.
Examples: 5α-androstane-3β,17β-diol, 5α-androstanedione, and 4-androstene-3β,17β-diol.

In other P450 systems, various substrates and substrate analogs show wide variation in their effects
on the coupling of the electron transfer process (Jung et al., 2002; Shertzer et al., 2004a, 2004b).

Substrates and analogs may influence the coupling of the electron transfer by sev-
eral mechanisms; e.g., changing accessibility of the heme pocket to water and modifying
the interaction of O2 with the heme iron of P450. To explain the inhibition of electron
leakage from P450scc during substrate cholesterol metabolism, in analogy with the
P450cam structure (Poulos et al., 1985), it has been suggested that the substrate may fully
occupy the active site, excluding water and decreasing the polarity of the microenvironment
of the FeO2 complex, and consequently inhibit the release of superoxide (Hanukoglu et al.,
1993). Studies of P450cam heme pocket using high-pressure stopped-flow technique indicate
that a suboptimal fit of the substrate in the heme pocket increases the mobility of the sub-
strate, facilitates the access for water molecules, disturbs the tight structural coupling for a
specific proton transfer and, thus, may lead to the formation of hydrogen peroxide or of
water in the oxidase reaction rather than substrate hydroxylation (Jung et al., 2002). The
substrate cholesterol apparently stabilizes P450scc-O2 complex, saving it for reduction by

Table 4 Classification of steroids based on their effect on P450c11 activity and electron leakage.

Effect on leakage Steroid type Functional groups Examples

Stimulatory substrate C-21 3-keto, 4-ene 
11-deoxy

Deoxycortisol

Stimulatory analog C-19 or C-21 3-keto, 4-ene 
11β-hydroxy

Deoxycorticosterone
Cortisol

Inhibitory C-19 or C-21 3-keto, 4-ene
11α-hydroxy

Corticosterone
Progesterone
11β-OH-Testosterone
11α-OH-Cortisol

No effect C-19 3β-OH or 5α 11α-OH-Testosterone
5α-Androstane-3β,17β-diol
5α-Androstanedione
4-Androstene-3β,17β-diol

The table is based on results presented by Rapoport et al. (1995).
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the second electron (Hanukoglu et al., 1993). In contrast, the substrates of P450c11 stimu-
late the autooxidation of P450c11-O2 complex, releasing superoxide. The reduction of
leakage by 11α-OH steroids may result from inhibition of P450c11-O2 complex formation
or inhibition of the autooxidation of this complex. The steroids that have no effect on elec-
tron leakage may not enter into the substrate pocket of P450, or simply not affect the
heme-O2 interaction in the active site.

Mitochondrial P450 Systems as a Source of ROS in Cultured Cells

The studies reviewed previously showed that mitochondrial P450 systems reconsti-
tuted with purified proteins can generate reactive oxygen species. The question is then
whether these results represent physiologically significant phenomenon in the natural
environment of the mitochondria of steroidogenic cells. Studies in cultured cells, reviewed
in the following paragraphs, reveal major similarities between the behavior of the mito-
chondrial P450 system proteins in reconstituted systems and within cells in culture.

Effects of overexpression on ROS dependent apoptosis. To examine the
effect of over-expression of adrenodoxin and P450scc, Derouet-Humbert et al. (2005)
transiently cotransfected an expression plasmid encoding for human adrenodoxin, bovine
adrenodoxin, or human CYP11A1 into 11 tumor-derived and non-tumorigenic cell lines.
The results of their studies showed that overexpression of either human or bovine adreno-
doxin led to a decrease in cell viability in all cell lines tested. Adrenodoxin expression
enhanced oxidation of dihydroethidium to ethidium, providing evidence for the generation
of ROS in the cell lines. In order to function as an “electron gun,” adrenodoxin is depen-
dent on adrenodoxin reductase (AdR) to receive reducing equivalents from NADPH,
which are then donated to O2 (Hanukoglu et al., 1993). AdR is ubiquitously expressed in
different cells. Thus, apparently endogenously expressed AdR was sufficient to allow
overly-expressed adrenodoxin to function as a source of ROS in transfected cells.

Formation of ROS within mitochondria is one of the major internal triggers for
apoptotic cell death (Bras et al., 2005). An early step in this process is the release of cyto-
chrome c from within the inter-membrane space of the mitochondria. Cytochrome c
aggregates with apoptosis-protease-activating factor 1 (Apaf-1), and procaspase-9
forming apoptosomes. Caspase-9 is cleaved and activated by the apoptosomes and then it
activates downstream effector caspases (caspase-3 and -7), spreading a cascade of pro-
teolytic activity that leads to digestion of structural proteins in the cytoplasm and eventual
phagocytosis of the cell (Bras et al., 2005).

Consistent with the process of apoptosis, overexpression of adrenodoxin was shown
to disrupt mitochondrial transmembrane potential, indicating breakdown of the outer
mitochondrial membrane and increased caspase activity in the cell (Derouet-Humbert
et al., 2005). Overexpression of an apo-mutant of adrenodoxin (C46S) that does not have
the iron-sulfur (2Fe-2S) cluster essential for electron transfer did not cause apoptosis
(Derouet-Humbert et al., 2005). This control experiment further strengthens the conclu-
sion that the cause of apoptosis is the superoxide production by adrenodoxin.

It has been suggested that adrenodoxin reductase (AdR) contributes to p53-mediated
apoptosis through the generation of oxidative stress in mitochondria (Hwang et al., 2001).
This suggestion was based on the observation that AdR gene is highly induced by the
chemotherapeutic agent 5-fluorouracil (5-FU) mediated by the p53 protein in HCT116
cell lines (Hwang et al., 2001; Liu and Chen, 2002). However, induction of AdR expres-
sion failed to show any effect on cell proliferation (Liu and Chen, 2002), and stable or
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transient overexpression of AdR did not decrease cell viability in different cell lines
(Derouet-Humbert et al., 2005). As noted previously, AdR by itself does not significantly
oxidize NADPH. Only in the presence of adrenodoxin AdR serves as a conduit for elec-
trons coming from NADPH (Hanukoglu et al., 1993). Consistent with these findings, AdR
over-expression by itself is not associated with increased ROS formation or ROS triggered
apoptosis (Derouet-Humbert et al., 2005).

Overexpression of human CYP11A1 that encodes P450scc showed variable effects
in 11 cell lines, leading the authors to conclude that “difference in the availability of mito-
chondrial cholesterol might contribute to the observed tissue specificity of CYP11A1-
induced apoptosis” (Derouet-Humbert et al., 2005). Again, these observations are consis-
tent with the results observed in reconstituted systems.

Effects of steroids and ROS on mitochondrial P450s. Studies using puri-
fied enzymes showed major differences in the capacity of different mitochondrial P450s
to generate and be affected by ROS (see previous sections). Studies in cultured cells show
similar differences.

In cultured adrenocortical cells the activity of P450c11 decreases rapidly as a result
of oxidative damage (Hornsby and Crivello, 1983; Hornsby, 1980, 1989). The loss of the
activity of P450c11 is not accompanied by loss of steroid synthesis, indicating that P450scc
continues to function with little or no damage under the same conditions. These findings
are consistent with the observation that P450c11 is much more leaky than P450scc in
reconstituted systems (Rapoport et al., 1995). Thus, the inactivation of P450c11 in cultured
cells may directly result from its much greater propensity to generate harmful oxygen radi-
cals. Another possibility is that inherently, P450c11 may be more prone than P450scc to
denaturation. P450c11 is more susceptible to degradation during NADPH-dependent lipid
peroxidation in bovine adrenal cortex mitochondria (Klimek et al., 1983).

The half-life of P450c11 in cultured adrenocortical cells is drastically shortened by
substrates of P450c11 or 11β-hydroxylated steroids, including products of P450c11
(Hornsby, 1980). In contrast, 11α-hydroxylated steroids or 11-ketosteroids did not affect
11β-hydroxylase activity (Hornsby, 1980). This structural specificity of the steroids in
inactivation of P450c11 in cultured cells is identical to that observed in stimulation of
electron leakage from P450c11 in reconstituted systems (Table 4). The stereospecificity of
the effects in both systems (e.g., harmless 11α-OH-testosterone vs. harmful 11β-OH-test-
osterone) establish unequivocally that the results in cultured cells are specifically a result
of the interaction of the steroids with the enzyme P450c11 itself, stimulating production of
ROS by P450c11 during the process of electron transfer.

In steroidogenic cells there are no major vesicular stores of steroid products, as ste-
roids are rapidly secreted into the blood stream after synthesis. Thus, the effects of the
products in stimulating ROS production by P450c11 should not be a major problem in
normal physiology. However, experimental observations noted previously raise a caveat
that steroidal drugs may have similar effects stimulating ROS production by steroid
metabolizing enzymes.

An example of a ROS-associated pathological action of a steroid is the effect of
1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the active form of vitamin D3, in breast can-
cer cells. The addition of this steroid derivative induces apoptosis in human breast cancer
MCF-7 cells by disruption of mitochondrial function, associated with cytochrome c
release, and production of reactive oxygen species (Narvaez and Welsh, 2001; Narvaez et
al., 2003). The exact mechanism of the effect of this steroid has not yet been elucidated,



OXYGEN RADICALS AND ANTIOXIDANTS IN STEROIDOGENIC CELLS 183

but one possibility is that it may stimulate ROS production similar to the effects observed
with other steroids.

Protective Mechanisms to Minimize ROS Production and Damage

The studies reviewed previously establish that mitochondrial P450 systems produce
ROS. According to the in vitro studies, if NADPH is constantly available to the mitochon-
drial P450 systems then these oxidize NADPH in a futile cycle, generating harmful oxy-
radicals without coupling to steroid metabolism. The next section on the regulation of
NADPH in the mitochondria of steroidogenic cells concludes that NADPH supply is not
tightly linked to steroid biosynthesis. Thus, production of ROS by mitochondrial P450
systems in steroidogenic cells appears to be an inevitable phenomenon. The following sec-
tion reviews antioxidants that may be involved in scavenging ROS in steroidogenic cells.

Regulation of NADPH availability for mitochondrial P450 systems. The
first step of steroid hormone biosynthesis in all steroidogenic tissues is the cleavage of the
side-chain of cholesterol by P450scc that produces pregnenolone (Hanukoglu, 1992; Miller,
2005; Payne and Hales, 2004). This initial reaction is dependent on the supply of cholesterol
from the cytoplasm. The transfer of cholesterol from the cytoplasmic vesicles to the mito-
chondria is tightly regulated by trophic hormone stimulated mechanisms that involve ste-
roidogenic acute regulatory protein (StAR) in most steroidogenic cells (Jefcoate, 2002;
Niswender, 2002; Strauss et al., 2003). In the placenta, a different START protein (MLN64)
is involved in the transport of cholesterol to the mitochondria (Tuckey, 2005).

In steroidogenic cells, the supply of cholesterol to mitochondria can be tightly cou-
pled with trophic hormonal signals, because the supplied cholesterol is uniquely used in
steroid biosynthesis. In contrast to cholesterol, the delivery of NADPH cannot be uniquely
coupled to steroid hormone biosynthesis because, in addition to serving as an electron
donor for P450 systems, NADPH is also used by a multitude of reactions within the mito-
chondria (Berger et al., 2004; Di Lisa and Ziegler, 2001; Hanukoglu and Rapoport, 1995;
Hoek and Rydstrom, 1988; Kirsch and De Groot, 2001). Thus, continuous maintenance of
a basal level of NADPH in the mitochondrial matrix is essential for normal function.

NADPH that supplies electrons to the mitochondrial P450 systems may be generated
by several alternative routes (Hanukoglu and Rapoport, 1995). In the short-term, the synthe-
sis of NADPH can be regulated by modulating the activities of the enzymes in these routes.
The intra-mitochondrial levels of NADPH are co-regulated with NADH generated by the
Krebs cycle, fatty acid β-oxidation and other redox reactions inside the mitochondria. The
enzyme nicotinamide nucleotide transhydrogenase catalyzes the interconversion of NADH
and NADPH according to the reaction (Hatefi and Yamaguchi, 1996; Jackson, 2003):

This enzyme also functions as a proton pump in the inner mitochondrial membrane.
In the forward direction, NADPH synthesis is coupled with H+ translocation from the
cytoplasmic side into the matrix of the mitochondria, and the converse occurs for the
reverse reaction. Thus, because of its coupling to the proton electrochemical gradient
across the inner mitochondrial membrane, the transhydrogenase activity (consequently
NADPH production) is linked to the functioning of oxidative phosphorylation chain.

Currently, there is no precise information on the absolute concentrations of the pyri-
dine nucleotides NADH and NADPH in the mitochondrial matrix where the steroidogenic

NADH + NADP+  + H+ NAD+  + NADPH + H+
out in�
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enzymes are located. Some early studies suggested that tropic hormones regulate the
Krebs cycle and NADPH production (Peron et al., 1975). Studies using single cell fluori-
metric technique revealed that in rat adrenal glomerulosa cells, angiotensin II and cyto-
plasmic signal Ca2+ evoke an increase in the level of reduced mitochondrial pyridine
nucleotides (Spat and Hunyady, 2004; Spat and Pitter, 2004). These studies established
that the supply of NADPH can be enhanced to meet the demands of trophic hormone stim-
ulated steroidogenesis.

Combining the previous observations, the general strategy of NADPH regulation in
mitochondria appears to be maintenance of low basal levels that are augmented in bursts
in response to steroidogenic trigger signals initiated by trophic hormones. While choles-
terol supply is regulated by “on-off” switch type mechanisms, NADPH synthesis is regu-
lated by mechanisms that function as a graded rheostat.

Studies in reconstituted systems for both P450scc and P450c11 demonstrated that
the magnitude of electron leak from these systems depends on the concentration of
NADPH even in the micromolar range (Rapoport et al., 1995). Thus, even in the presence
of low levels of NADPH the systems would be expected to leak electrons.

A study that examined the redox state of adrenodoxin by ESR spectroscopy concluded
that adrenodoxin remains fully reduced in hypophysectomized rat adrenals with or without
ACTH treatment (Williams-Smith et al., 1976). This interpretation requires a caveat that cel-
lular metabolism could have changed within minutes after induction of anesthesia and prior
to the removal of the adrenal. If these findings reflect normal physiological status, then
adrenodoxin may be a source of ROS in absence of steroid metabolism.

An important conclusion that can be derived from the adrenodoxin overexpression
studies reviewed previously is that, apparently NADPH in the mitochondrial matrix is
directly being oxidized by the AdR-adrenodoxin couple even in the absence of a P450 that
could receive the electrons channeled via adrenodoxin. In other words, NADPH supply
does not appear to be a rate-limiting factor for the AdR-adrenodoxin couple to function as
an artificial NADPH oxidase generated by the adrenodoxin overexpression. This conclu-
sion may be questioned, noting that the cells used in overexpression studies are non-ste-
roidogenic cells. Yet, the mitochondrial P450 system electron transfer proteins are
ubiquitously expressed in different tissues. Therefore, the consistent effect of adrenodoxin
overexpression in 11 different cell types probably reflects a general status.

In addition to short-term mechanisms of enzyme activation and intermediate sub-
strate metabolism, NADPH biosynthesis may also be regulated by long-term mechanisms
at the level of the expression of the enzymes in the pathways of NAD(P)H production.
ACTH was shown to induce the expression of mitochondrial mRNAs encoding subunits
of oxidative phosphorylation system enzymes, in parallel with the induction of ste-
roidogenic enzyme genes in adrenocortical cells in culture (Raikhinstein and Hanukoglu,
1993, 1994). In bovine corpora lutea, a low but significant correlation was observed
between mitochondrial P450 system enzymes and a cytochrome oxidase subunit (Hanukoglu
and Hanukoglu, 1986). In mouse ovary, the activities of isocitrate dehydrogenase and other
enzymes of glucose metabolism vary in parallel with the steroidogenic capacity of the
ovary (Chapman et al., 1992).

Antioxidants in steroidogenic tissues. The major source of free radicals,
such as superoxide and other types of ROS, in the cell, is the electron transfer reactions of
the mitochondrial oxidative phosphorylation chain (Andreyev et al., 2005; Turrens, 2003).
The ROS generated by the respiratory chain can damage proteins, lipids, and DNA. There
are several lines of evidence that these changes, but especially damage to the mitochondrial
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DNA (mtDNA), are responsible for the process of aging (Barja, 2004; Melov, 2004; Vina
et al., 2005). The rate of mitochondrial ROS generation is related to the level of oxidative
damage to mtDNA and is inversely correlated with maximum longevity in higher verte-
brates (Barja, 2004). To prevent the harmful effects of ROS, mitochondria have a rich rep-
ertoire of enzymes (e.g., manganese superoxide dismutase (Mn-SOD), catalase,
glutathione peroxidase, and glutathione reductase) and small antioxidant molecules (e.g.,
ascorbic acid, α-tocopherol, β-carotene) that can neutralize or scavenge superoxide and
other ROS (Andreyev et al., 2005).

The studies reviewed previously have indicated that in steroidogenic tissues, the
mitochondrial P450 systems can represent an additional burden over the common oxida-
tive stress of the respiratory chain. Thus, steroidogenic tissues would be expected to have
a strong dependence on antioxidants as a defense mechanism. Indeed, the studies reviewed
next indicate that the normal function of steroidogenic tissues is dependent on antioxi-
dants. In addition to their function as antioxidants, molecules such as ascorbic acid and β-
carotene fulfill biological roles independent of interaction with oxygen radicals. For
example, retinoid derivatives of β-carotene regulate gene transcription in cells by binding
to nuclear retinoid receptor (Lane and Bailey, 2005). Therefore, the effects of antioxidant
molecules should be examined to ascertain that these are due to antioxidant properties of
the molecule and not secondary effects of other biological actions.

Antioxidants in the adrenal cortex. In bovine adrenal cortex cells in culture,
P450c11, but not P450scc, undergoes rapid degradation in the absence of antioxidants and
this degradation can be prevented by the addition of ascorbic acid and α-tocopherol
(Hanukoglu et al., 1990a; Hornsby et al., 1985; Hornsby, 1989). The requirement for anti-
oxidants for P450c11 stability (but not for P450scc) in cultured cells is consistent with the
observations in reconstituted systems that P450c11 leaks electrons much more than
P450scc (Rapoport et al., 1995). Chronic in vivo administration of ACTH in rats was
observed to reduce plasma aldosterone, down-regulate CYP11B2 mRNA, and reduce
P450aldo activity (Lehoux et al., 1998; Suwa et al., 2000). The induced decrease in
CYP11B2 mRNA level was recovered with co-administration of vitamin E or DMSO pos-
sibly through their antioxidant actions (Suwa et al., 2000).

In rat adrenals, measurement of the total SOD activity and the activity of the mito-
chondrial manganese superoxide dismutase (Mn-SOD) indicated that Mn-SOD encoded
by the SOD2 gene accounts for all the SOD activity (Raza et al., 2005). Mn-SOD is
induced by ACTH in bovine adrenocortical cells (Chinn et al., 2002). Chronic ACTH
administration in rats increased Mn-SOD expression, but decreased glutathione peroxi-
dase mRNA in the adrenal capsules (Raza et al., 2005; Suwa et al., 2000). ACTH adminis-
tration, together with antioxidant vitamin E or DMSO, inhibited ACTH induction of
Mn-SOD (Suwa et al., 2000). One possible explanation for this finding is that antioxidants
reduce the oxidative stress, consequently reducing the stimulus for mitochondrial ROS
mediated induction of Mn-SOD. Recent findings indicate that mitochondrial ROS activate
a mitochondrion-to-nucleus signal relay pathway in which the serine/threonine protein
kinase D (PKD) activates the NF-kappaB transcription factor, leading to induction of
SOD2 expression (Storz et al., 2005).

In addition to natural antioxidants, a protective effect against the oxidative stress of
steroid biosynthesis has been demonstrated using artificial antioxidants. The addition of
an antioxidant drug, silibinin, at a low dose, potentiated ACTH-stimulated secretion of
corticosteroids in hyperplastic adrenocortical cells, leading the authors to conclude that
the effect of silibinin is presumably due to the antioxidant property of the drug (Racz
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et al., 1990). In bovine kidney proximal tubule cells in primary culture, mitochondrial
vitamin D hydroxylase activities were found to be inversely proportional to the increase in
mitochondrial membrane lipid hyperperoxide production (Crivello, 1988). Pretreatment of
the culture with antioxidants, butylated hydroxyanisole (BHA), and butylated hydroxytol-
uene (BHT), drastically reduced lipid hyperperoxide production (Crivello, 1988).

Whereas vitamin A related β-carotene, and vitamin E related α-tocopherol are lipid-
soluble, vitamin C (ascorbic acid) is a water-soluble antioxidant. Among all organs in the
body, the concentration of ascorbic acid is highest in the steroidogenic tissues, adrenal
cortex, and corpus luteum (Hornig, 1975; Mahan et al., 2004; Rapoport et al., 1998).
ACTH stimulated cortisol secretion from the guinea pig adrenal is accompanied by a
decrease in the levels of ascorbate in the adrenal, but not in other tissues or plasma (Laney
et al., 1990). In rats, vitamin A depletion causes a secondary deficiency of ascorbic acid in
the adrenal, leading to adrenocortical degeneration, and ascorbate supplement prevents
degeneration (Gruber et al., 1976). Ascorbate depletion prevents aldosterone stimulation
by sodium deficiency in the guinea pig (Redmann et al., 1995).

An important action of ascorbate as an antioxidant is the recycling of α-tocopheryl
radical (Buettner, 1993; May, 1999; Rose and Bode, 1993). Thus, in the guinea pig adre-
nal cortex, actions of ascorbate were shown to be related to the mitochondrial tocopherol
content in the different zones of the cortex (Staats and Colby, 1989).

Antioxidants in the ovary. In the ovary, the types and quantities of steroids
synthesized differ by the stage of the estrus cycle of animals. After ovulation, the follicle
enters the luteal phase, during which granulosa and theca cells of the follicle proliferate to
form corpus luteum, and synthesize and secrete progesterone at high levels (nmol/L range)
to prepare the uterus for implantation. If there is no pregnancy, then corpus luteum
regresses by an apoptotic process (McCracken et al., 1999; Niswender, 2002; Tilly, 1996;
Zheng et al., 1994). During the luteal phase, the increase in progesterone secretion reflects
proliferation of steroidogenic cells and a major increase in the expression of the ste-
roidogenic enzymes, primarily mitochondrial cholesterol side-chain cleavage P450scc.
The final stage of corpus luteum regression is characterized by a decrease in the levels of
the P450scc system proteins (Devoto et al., 2002; Hanukoglu, 1992; Rapoport et al., 1998;
Rodgers et al., 1987).

Reactive oxygen species (ROS) and antioxidants appear to have two contrasting
effects in the development and regression of the corpus luteum. During the initial phase of
development and cell proliferation with enhanced progesterone synthesis, ROS generated
by the mitochondrial P450scc system represent a harmful byproduct of steroidogenesis.
Therefore, as a defense against these ROS, antioxidants would be expected to rise in paral-
lel with the steroidogenic capacity of the cells. In contrast, at the stage of luteolysis, free
radicals could play a functional role in apoptotic cell death and contribute to regression of
corpus luteum (Behrman et al., 2001; Foyouzi et al., 2005; Niswender et al., 2000). Thus,
at the final stage of corpus luteum, antioxidant levels would be expected to decrease,
allowing ROS to contribute to apoptosis and regression of the corpus luteum. The findings
reviewed in the following paragraphs for the antioxidant enzymes SOD, catalase, and glu-
tathione peroxidase are, in general, consistent with these expected trends. The findings for
the small antioxidant molecules show that the levels of these antioxidants change signifi-
cantly during corpus luteum development, yet there does not appear to be a consistent pat-
tern indicating complex functional and regulatory roles for these. It should be emphasized
the ROS is only one group of a large number of factors that contribute to luteal regression
(Amsterdam et al., 2003; Hussein, 2005; McCracken et al., 1999).
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Determination of the activities of the antioxidant enzymes, SOD and catalase,
showed that these are correlated with the plasma progesterone levels during the bovine
estrus cycle (Rapoport et al., 1998). In bovine corpora lutea, the activities of SOD and cat-
alase rise and reach a peak at about day 16 of the cycle and then drop in parallel with the
levels of P450scc and adrenodoxin (Rapoport et al., 1998). In sheep corpora lutea, cytoso-
lic Cu-Zn-SOD, mitochondrial Mn-SOD, and glutathione peroxidase activities rise while
nitric oxide synthase (NOS) decreases during the luteal phase (Al-Gubory et al., 2005).
During the human menstrual cycle, the activity of Mn-SOD, as well as the levels of its
mRNA, were shown to increase during late luteal phase, indicating that increased enzyme
activity is a result of enhanced expression of the SOD2 gene (Sugino et al., 2000). How-
ever, while Cu-Zn-SOD activity and mRNA dropped during luteal regression, Mn-SOD
activity and mRNA showed further increases, suggesting that these two enzymes play dif-
ferent roles in regulating luteal function (Sugino et al., 2000). In cultured ovarian cancer
cells, ROS stress induced Mn-SOD expression; suppression of Mn-SOD expression by
siRNA caused an increase in superoxide and promoted cell proliferation in vitro and
tumor growth in vivo (Hu et al., 2005). These findings emphasize the role of Mn-SOD in
coping with ROS generated in the mitochondria.

In addition to SOD, catalase, and glutathione peroxidases, a family of more recently
identified peroxidases named peroxiredoxins may also be involved in protection against
ROS damage in the mitochondria. In Chinese hamster ovary cells, overexpression of mito-
chondrial peroxiredoxin 5 showed significant protective effect on mtDNA against lesions
caused by exogenously added hydrogen peroxide (Banmeyer et al., 2005).

There are several independent lines of evidence that trophic hormones that are
involved in the stimulation of corpus luteum steroidogenesis are also involved in inducing
antioxidant enzymes. Lutropin (human luteinizing hormone, LH) that stimulates follicle
development, ovulation, and corpus luteum formation was shown to induce SOD in rat
ovary (Laloraya et al., 1988). Prolactin that functions as a luteotropic hormone in the rat
also stimulates Cu-Zn-SOD and Mn-SOD mRNA expression in rat luteal cells (Sugino
et al., 1998).

The mechanism of gonadotropin induction of antioxidant enzymes is not known yet.
Hormones such as LH may activate the expression of these enzymes via a direct second-
messenger mediated pathway. Alternatively, induction of antioxidant enzymes may be a
secondary effect of enhanced ROS production that accompanies enhanced steroidogenic
activity. As noted previously in the section on the adrenal cortex, mitochondrial ROS can
activate a mitochondrion-to-nucleus signal to influence gene expression.

Treatment of rat corpus luteum cells with LH that stimulates progesterone secretion
has been observed also to increase superoxide generation in a dose-dependent manner
(Sawada and Carlson, 1996). These findings have been interpreted to suggest that super-
oxide may be involved in the mechanism of luteotropic response to LH (Sawada and Carlson,
1996). However, superoxide production is probably stimulated by LH, as a side-reaction,
a sbyproduct, of the LH stimulation of steroidogenesis. As noted previously, trophic
hormone stimulation in adrenal cells is associated with increased NADPH synthesis.
Similarly, LH probably enhances NADPH levels in luteal cells. As a consequence of LH-
stimulated steroidogenesis, superoxide production would be expected to increase as well.
Studies in reconstituted systems using purified proteins do not provide evidence for the
involvement of exogenous ROS in the biosynthetic reactions catalyzed by the mitochon-
drial P450s. On the contrary, exogenous ROS are detrimental to the function of the P450



188 I. HANUKOGLU

system proteins. Similarly, in cultured luteal cells, high levels of superoxide are associated
with inhibition of progesterone secretion (Sawada and Carlson, 1996).

Among the small molecule antioxidants, ascorbate is present at highest concentra-
tions in corpora lutea, similar to the high levels observed in the adrenal cortex (Table 5).
In bovine corpus luteum, the levels of ascorbate increase during the luteal phase and then
drop during regression (Rapoport et al., 1998). In rat luteal cells, stimulation with luteiniz-
ing hormone (LH) or luteolytic factor, prostaglandin (PG) F2α rapidly causes depletion of
ascorbic acid (Musicki et al., 1996). In the corpus luteum of the pseudopregnant rat, acute
treatment with PGF2α decreased luteal vitamin C levels coincident with transient lipid per-
oxidation and a fall in serum progesterone levels (Aten et al., 1992). Vitamin C is taken up
into the cell by specific transporter proteins SVCT1 and SVCT2 (Wilson, 2005). In
rat granulosa cells in culture, gonadotropic hormone FSH and insulin-like growth factor
I (IGF-I) stimulate uptake of ascorbic acid (Behrman et al., 1996).

Examination of 43 corpora lutea from non-pregnant cows representing four stages
of the ovarian cycle showed that β-carotene and α-tocopherol continuously increased
from stage I to stage IV (Schweigert, 2003). Two other studies have independently
reported that bovine corpus luteum β-carotene levels are positively correlated with plasma
progesterone levels (Haliloglu et al., 2002; Rapoport et al., 1998). In rat ovary, follicular
development was associated with an increase in vitamin A and luteal regression was asso-
ciated with an increase in both vitamins A and E (Aten et al., 1992). Studies in bovine
luteal cells in culture showed that β-carotene depletion caused inactivation of P450scc and
its crosslinking to adrenodoxin. The addition of β-carotene at levels found in bovine
serum, but not α-tocopherol or ascorbic acid, inhibited the cross-linking (Young et al.,
1995). The fact that both adrenodoxin and P450 are metal carrying proteins that generate
free radicals during electron transfer make these proteins prone to metal-catalyzed oxida-
tion and crosslinking reactions (Liu et al., 2004; Stadtman, 1993). The in vitro effect of β-
carotene most probably reflects the function of the antioxidants to prevent oxidative
damage in situ as well.

Antioxidants in the testis. The Leydig cells in the interstitium, located in
between the seminiferous tubules of the testis, are the major source of androgenic steroids
(Payne and Hales, 2004; Zirkin and Chen, 2000). The Leydig cells develop and reach their
full steroidogenic potential after puberty (Cummings and Kavlock, 2004). With aging in
males, the capacity for testosterone biosynthesis declines as a consequence of multiple
alterations in the hypothalamic-pituitary axis and Leydig cell steroidogenic system (Wang
and Stocco, 2005; Zirkin and Chen, 2000). As in other steroidogenic tissues, testis has the
usual complement of antioxidant enzymes, including SOD, catalase, glutathione peroxi-
dase, and glutathione transferase (Kukucka and Misra, 1993; Peltola et al., 1996) and

Table 5 Antioxidant levels in steroidogenic tissues.

Antioxidant Species Tissue Concentration* Reference

Ascorbate Rat Adrenal 2.5–5 mg/g tissue (Mitani et al., 2005)
α-tocopherol Rat Adrenal 30–50 μg/g tissue (Burczynski et al., 2001)
Ascorbate Bovine C. luteum 4–10 mg/g tissue (Rapoport et al., 1998)
β-carotene Bovine C. luteum 6–216 μg/g tissue (Arikan and Rodway, 2001) (Haliloglu et al., 2002)
α-tocopherol Bovine C. luteum 1–132 μg/g tissue (Rapoport et al., 1998) (Schweigert, 2003)
Vitamin A Bovine C. luteum 3.5–5.5 μg/g tissue (Haliloglu et al., 2002)

C. luteum: Corpus luteum.
*Concentration per tissue wet weight.
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small antioxidants (Chen et al., 2005; Livera et al., 2002). As in the ovary, stimulation of
the testicular interstitial tissue increases the activities of antioxidant enzyme glutathione
peroxidase (Peltola et al., 1996).

The findings of some studies provide evidence for the hypothesis that ROS pro-
duced as a by-product of steroidogenesis may be responsible for age-related decline in tes-
tosterone production by the Leydig cells (Chen and Zirkin, 1999; Zirkin and Chen, 2000).
A method that has been used to test this hypothesis is the blockade of testicular steroido-
genesis by administering a high dose of testosterone that suppresses LH secretion via a
negative feedback mechanism on the hypothalamo-pituitary axis, and consequently inhib-
its Leydig cell testosterone production. In rats, testosterone treatment for 8 days decreased
catalase, glutathione peroxidase, and glutathione transferase activities in the interstitial tis-
sue (Peltola et al., 1996). A more recent study examined the effect of contraceptive doses
of testosterone administered to male rats for 8 months using Silastic implants (Chen and
Zirkin, 1999). Compared to control rats of the same age, the testosterone production
capacity of the rats that had the long-term suppression was higher (Chen and Zirkin,
1999). The explanation provided for these findings was that the placement of the Leydig
cells in a state of steroidogenic “hibernation” reduced steroidogenic activity and conse-
quently decreased accompanying ROS production and prevented aging. Thus, after removal
of the blockade, the testis started functioning at the levels observed for young rats.

Exogenously added H2O2 was observed to inhibit both cAMP-stimulated progester-
one production and StAR protein expression in MA-10 tumor Leydig cells, but did not
effect P450scc enzyme levels (Diemer et al., 2003). These results suggest differential sen-
sitivity of different parts of the steroidogenic machinery to ROS effects. Yet, the exoge-
nous application of the H2O2 also raises the question whether the differential effects may
be a result of differential exposure to the damaging effects of the externally applied H2O2.

Similar to the findings in adrenocortical cells (see previous sections), culturing
Leydig cells with vitamin E, or administering vitamin E to rats, showed protective effects
on steroidogenic function (Chen et al., 2005).

SUMMARY

In summary, the studies reviewed in this section showed the following associations
between mitochondrial P450 systems and antioxidants present in their environment:

1. Increased activity or expression of adrenodoxin or mitochondrial P450s is associated
with increased ROS production and oxidative damage.

2. Steroidogenic cells have a full spectrum of antioxidant molecules, which in some tis-
sues reach the highest level in the body.

3. Steroidogenic capacity correlates with the levels of antioxidant enzymes. The expression of
some antioxidant enzymes are activated by trophic hormones that stimulate steroidogenesis.

4. Depletion of specific antioxidants can lead to loss of activity of “sensitive” mitochon-
drial P450s.

5. Addition of antioxidants can prevent or reverse oxidative damage effects induced by
the P450 system proteins.

It should be emphasized that these points apply for the specific cases reviewed, and do
not represent general rules for all mitochondrial P450 and antioxidant combinations in
different systems.
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ABBREVIATIONS

AdR adrenodoxin reductase 
ROS reactive oxygen species
SOD superoxide dismutase
Subscript “red” reduced

DEDICATION

This review is dedicated to the memory of my dear friend and colleague Dr. David
Kupfer (Z.L) whose research career was devoted to the study of the role of cytochrome
P450 type enzymes in drug metabolism (Schenkman, 2005; Stresser, 2006).
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